
Miscomputation
Learning to live with errors

Tomas Petricek, University of Cambridge
 | | http://tomasp.net tomas@tomasp.net @tomaspetricek

http://tomasp.net/
mailto:tomas@tomasp.net
http://twitter.com/tomaspetricek

Miscomputation

If trials of three or four simple cases have been made, and
are found to agree with the results given by the engine, it

is scarcely possible that there can be any error (...).

Charles Babbage, On the mathematical
powers of the calculating engine (1837)

Errors in coding were only gradually recognized to be a significant
problem: a typical early comment was that of Miller [circa 1949], who
wrote that such errors, along with hardware faults, could be "expected,

in time, to become infrequent".

Mark Priestley, Science of Operations (2011)

Examples of miscomputations

Invalid specification
Invalid implementation
No specification available
Physical error condition

Living with errors

Errors as a curse

Algol research programme (1960s)

One of the goals (..) was to utilize the resources of logic to increase
the confidence (..) in the correctness of a program. As McCarthy had
put it, "[instead] of debugging a program, one should prove that it

meets its specifications (...)".

Mark Priestley, Science of Operations (2011)

Dependently typed programming (2010s)

Tries to make proof a part of programming practice

[T]oday most people who write software (...) assume that the costs of
formal program verification outweigh the benefits. The purpose of this
book is to convince you that the technology of program verification is

mature enough today (...).

Adam Chlipala, Certified Programming
with Dependent Types (2013)

Error as a curse

Dream for the last 50 years

Common point of view in academic
programming language community

Mixed success in practice

Errors as progress

Engineering approach

Solid engineering practices are often good enough.

Testing software is one such practice.

Tests to rule out errors
Tests to rule out regression errors
Tests as a specification

Test-Driven Development (TDD)

[In TDD] we drive development with automated tests (...). We

1. write new code only if an automated test has failed
2. eliminate duplication.

These are two simple rules, but they generate complex
individual and group behavior (...).

Kent Beck, Test-Driven
Development by Example (2003)

Test-Driven Development (TDD)

1. Introduce controlled isolated miscomputation
2. Eliminate miscomputation by writing more code

TDD incorporates miscomputation
as a part of the development cycle!

Tests serve as specification and documentation

Errors as the unavoidable

Erlang programming langauge

Created by Ericsson for telecomunications

Distributed long-running reliable systems

Miscomputations in Erlang

exceptions occur when the run-time does not know what to do.
errors occur when the programmer doesn’t know what to do.

Joe Armstrong, Programming reliable systems (2003)

Errors are expected. Specification does not cover all cases.

Handling errors in Erlang

What kind of code must the programmer write when they find an
error? The philosophy is let some other process fix the error, but what

does this mean for their code? The answer is let it crash.

Joe Armstrong, Programming reliable systems (2003)

Errors as the unavoidable

Miscomputation is a normal part of execution.

(Should we still call it miscomputation?)

Errors as an inspiration

Smalltalk ecosystem (1970s)

[Smalltalk approach] to the design of programming languages [is]
quite different from what was familiar in the Algol [programme].

Programming was not thought of as the task of constructing a linguistic
entity, but rather as a process of working interactively with the semantic

representation of the program, using text as one possible interface.

Mark Priestley, Science of Operations (2011)

Computation as interaction
Live coding environments for performing music

In musical genres that are not notated so closely (...), there are no wrong
notes – only notes that are more or less appropriate to the performance.

Alan Blackwell and Nick Collins, The Programming
Language as a Musical Instrument (2005

Miscomputation in live coding
[Live coders] may well prefer to accept the results of an imperfect

execution. [They] might perhaps compensate for an unexpected result
by manual intervention, or even accept the result as a serendipitous

alternative to the original note.

Alan Blackwell and Nick Collins, The Programming
Language as a Musical Instrument (2005)

Errors as an inspiration

Make miscomputations more apparent.

Enable quick human intervention.

Not limited to live coded art performances!

Summary

Summary

Not all miscomputation is bad

(Is it still a miscomputation when it's expected?)

Different research programmes

(No approach is better in general)

 | | http://tomasp.net tomas@tomasp.net @tomaspetricek

http://tomasp.net/
mailto:tomas@tomasp.net
http://twitter.com/tomaspetricek

