
Several types of types in programming languages

Simone Martini

Dipartimento di Informatica – Scienza e Ingegneria
Alma mater studiorum • Università di Bologna

HaPoC 2015, Pisa October 8, 2015

1 / 39

On the types mailing list

From: Vladimir Voevodsky

Date: 12 May 2014

(...)

The concept of types as we use it today

has very little [to do] with how types

where perceived by Russell or Church.

For them types were a restriction mechanism.

(...) today are a constructive tool. (...)

When and where did types appear in programming

languages which were enabling rather than forbidding

in nature?

2 / 39

We today conflate:

Types as a classification mechanism (from mathematical logic)

Types as an abstraction mechanism

Types as an implementation (representation) issue

Goal:
separate them and identify when they arrive in the PL literature

3 / 39

We today conflate:

Types as a classification mechanism (from mathematical logic)

Types as an abstraction mechanism

Types as an implementation (representation) issue

Goal:
separate them and identify when they arrive in the PL literature

4 / 39

Antefact: mathematical logic

A type is the range of significance of a variable.
[Russell and Whitehead, 1910]

Types forbid certain inferences which would otherwise be valid,
but does not permit any which would otherwise be invalid.

[ibidem]

And then. . .

Leon Chwistek, in 1921
Frank P. Ramsey in 1926
. . .
Alonzo Church in 1940
. . .

5 / 39

Antefact: mathematical logic

A type is the range of significance of a variable.
[Russell and Whitehead, 1910]

Types forbid certain inferences which would otherwise be valid,
but does not permit any which would otherwise be invalid.

[ibidem]

And then. . .

Leon Chwistek, in 1921
Frank P. Ramsey in 1926
. . .
Alonzo Church in 1940
. . .

6 / 39

Part I

The term “type”

7 / 39

Types in early Fortran?

Two types of constants are permissible: fixed points (restricted to
integers) and floating points

32 types of statement
[The FORTRAN automatic coding system, 1956]

Any fixed point (floating point) constant, variable, or subscripted
variable is an expression of the same mode.

[ibidem]

8 / 39

Algol 58:
types

Type declarations serve to declare certain variables, or functions, to
represent quantities of a given class, such as the class of integers
or class of Boolean values.
[Perlis and Samelson. Preliminary report: International algebraic language. Commun. ACM 1(12), December 1958.]

9 / 39

No types
in the preparatory papers!

A data symbol falls in one of the following classes:
a) Integer b) Boolean c) General

The symbol classification statements are:
INTEGER (s1, . . . , sn)
BOOLEAN (s1, . . . , sn)

[Backus et al. Proposal for a programming language. ACM Ad Hoc Committee on Languages, 1958.]

10 / 39

Algol 60:
maturity

Integers are of type integer. All other numbers are of type real.

The various “types” (integer, real, Boolean) basically denote
properties of values.

[Backus et al. Report on the algorithmic language ALGOL 60. Commun. ACM 3(5), May 1960.]

11 / 39

These types:

guide the compiler

are a reasonable abstraction over implementation details
(contra: FORTRAN !)

However:

no provision for other data, but integer, real, Boolean

12 / 39

Moreover

The technical term “type”:

appears to be a semantical shift from the generic term

no role of the “type” from mathematical logic

13 / 39

Part II

Types as an abstraction mechanism

14 / 39

The modern view

Type structure is a syntactic discipline
for enforcing levels of abstraction [John Reynolds, 1983]

15 / 39

McCarthy:
the “weakness” of Algol

1961:

defining new data spaces in terms of given base spaces and (. . .)
defining functions on the new spaces in terms of functions on the
base spaces

[John McCarthy. A basis for a mathematical theory of computation, preliminary report. 1961]

16 / 39

Hoare:
records and references

1964:

ordered collection of named fields

typed references (like pointers, but no operations)

non stack-based, dynamically allocated structures

17 / 39

Dahl and Nygaard:
objects ante litteram

around 1962:

record class: activity;

record: process;

record field: local variable of a process

a “process” encapsulates both data objects and their
operators: an object (Alan Key, 1976).

18 / 39

Hoare:
records and references, 2

With Hoare’s paper, types become a general abstraction
mechanism:

[Our proposal] is no arbitrary extension to an existing language,
but represents a genuine abstraction of some feature which is
fundamental to the art or science of computation.

[Tony Hoare, 1964]

19 / 39

Hoare:
records and references, 3

1 from simple to structured values

2 types are a general modelling tool

3 robust abstraction over the memory layout

20 / 39

Modelling tool

In the simulation of complex situations in the real world, it is
necessary to construct in the computer analogues of the objects of
the real world, so that procedures representing types of even may
operate upon them in a realistic fashion.

[Tony Hoare, 1964] (page 46, and, more generally, all Section 4)

21 / 39

Robust abstraction

It was a firm principle of our implementation that the results of
any program, even erroneous, should be comprehensible without
knowing anything about the machine or its storage layout

[Tony Hoare, 2014, personal communication]

22 / 39

Algol W,
circa 1970

Every value is said to be of a certain type.

The following types of structured values are distiguished:
array: (. . .), record: (. . .).

[Algol W reference manual, 1972]

23 / 39

Towards ADTs

Morris, 1973 and Reynolds, 1974

The meaning of a syntactically-valid program in a “type-correct”
language should never depend upon the particular representation
used to implement its primitive types.

The main thesis of [Morris 1973] is that this property of
representation independence should hold for user-defined types as
well as primitive types.

[Reynolds, 1974]

24 / 39

ADTs and objects

Why at the beginning of the 80s

abstract data types kind of algebraic structures

with nice mathematical semantics

give way to objects? with difficult semantics

flexibility, see later (paper)

25 / 39

ADTs and objects

Why at the beginning of the 80s

abstract data types kind of algebraic structures

with nice mathematical semantics

give way to objects? with difficult semantics

flexibility, see later (paper)

26 / 39

Part III

Types from mathematical logic

27 / 39

certainly people knew “some logic”:
McCarthy, Hoare, Landin, Scott (!), Morris, etc.

but

Morris (1968) cites Curry (1958), but not Church (1940)

Reynolds (1974) rediscovers Girard’s System F (1971)

Milner (1977-78) rediscovers
simple type inference (Hindley, 1969)

Programming languages and proof-theory are talking the same
language, but the conflation is anonymous.

28 / 39

certainly people knew “some logic”:
McCarthy, Hoare, Landin, Scott (!), Morris, etc.

but

Morris (1968) cites Curry (1958), but not Church (1940)

Reynolds (1974) rediscovers Girard’s System F (1971)

Milner (1977-78) rediscovers
simple type inference (Hindley, 1969)

Programming languages and proof-theory are talking the same
language, but the conflation is anonymous.

29 / 39

certainly people knew “some logic”:
McCarthy, Hoare, Landin, Scott (!), Morris, etc.

but

Morris (1968) cites Curry (1958), but not Church (1940)

Reynolds (1974) rediscovers Girard’s System F (1971)

Milner (1977-78) rediscovers
simple type inference (Hindley, 1969)

Programming languages and proof-theory are talking the same
language, but the conflation is anonymous.

30 / 39

Yet, compare:

Types forbid certain inferences which would otherwise be valid,
but does not permit any which would otherwise be invalid.

[Russell and Whitehead, 1910]

We shall now introduce a type system which, in effect, singles out
a decidable subset of those wfes that are safe; i.e., cannot given
rise to ERRORs. This will disqualify certain wfes which do not, in
fact, cause ERRORS and thus reduce the expressive power of the
language.

[Morris, PhD thesis, 1968]

31 / 39

Yet, compare:

Types forbid certain inferences which would otherwise be valid,
but does not permit any which would otherwise be invalid.

[Russell and Whitehead, 1910]

We shall now introduce a type system which, in effect, singles out
a decidable subset of those wfes that are safe; i.e., cannot given
rise to ERRORs. This will disqualify certain wfes which do not, in
fact, cause ERRORS and thus reduce the expressive power of the
language.

[Morris, PhD thesis, 1968]

32 / 39

“Denoting” vs. “Non denoting”

becomes

“Non producing errors” vs. “Producing errors”

Well-typed expressions do not go wrong.
[Milner, 1978]

33 / 39

The formidable middleman:

λ-calculus

The catalist:

Curry-Howard isomorphism, (1969); 1980

34 / 39

The formidable middleman:

λ-calculus

The catalist:

Curry-Howard isomorphism, (1969); 1980

35 / 39

The explicit recognition:

Per Martin-Löf.
Constructive mathematics and computer programming.

(1979); 1982.

1 62 P. MARTIN-LOF

but also, and this is the reading which is most natural when the language is
thought of as a programming language,

A is a problem (task).

Correlatively, the third form of judgment may be read not only

u is an object of type (element of the set) A ,

a is a proof of the proposition A ,

but also
u is a program for the problem (task) A .

The equivalence of the first two readings is the by now well-known cor-
respondence between propositions and types discovered by CURRY (1 958,
pp. 312-315) and HOWARD (1969), whereas the transition from the second
to the third is the KOLMOGOROV (1932) interpretation of propositions as
problems or tasks (Ger. Aufgube).

The four forms of judgment used in the theory of types should be com-
pared with the three forms of judgment used (although usually not so called)
in standard presentations of first order predicate calculus, whether classical
or intuitionistic, namely

A is a formula ,
A is true ,
a is an individual term,

The first of these corresponds to the form A is a type (proposition),
the second is obtained from the form u is an object of type (a proof of the
proposition) A by suppressing a, and the third is again obtained from the
form a is an object of type A, this time by choosing for A the type of
individuals.

In explaining what a judgment of one of the above four forms means,
I shall first limit myself to assumption free judgments. Once it has been
explained what meanings they carry, the explanations can readily be
extended so as to cover hypothetical judgments as well.

A canonical type A is defined by prescribing how a canonical object of
type A is formed as well as how two equal canonical objects of type A are
formed. There is no limitation on this prescription except that the relation
of equality which it defines between canonical objects of type A must be
reflexive, symmetric and transitive. If the rules for forming canonical objects

36 / 39

In foundations of mathematics, types:

never supposed to be used by the working mathematician

in principle could be used, to avoid paradoxes

In programming languages, types:

are used everyday, by everyone

should be made more “expressive”, “flexible”

37 / 39

In foundations of mathematics, types:

are perceived as constraints
(they “forbid” something, as in Russell’s quote).

In programming languages, types:

are experienced as an enabling feature (Voevodsky),
allowing simpler writing of programs,

and better verification of their correctess.

38 / 39

Sipario

Computer science never used ideological glasses
(types per se; constructive mathematics per se; logic per se; etc.),

but exploited what it found useful for the design
of more elegant, economical, usable artefacts.

39 / 39

	The term ``type''
	Types as an abstraction mechanism
	Types from mathematical logic

