

What do the Axiom of Choice, the lambda calculus, de Bruijn indexes, verification of mobile systems, input, resource generation, automata with infinite alphabets, and several more yet-to-come theories have in common?

Names

Vincenzo Ciancia

Istituto di Scienza e Tecnologia dell'Informazione "A. Faedo" - CNR - Pisa

Pisa, October 10 2015

Independence of the Axiom of Choice

(Fraenkel-Mostowski 1922-1938)

Permutations as constraints

 $(X, \hat{\pi})$, π permutation of \mathbb{N}

 $\hat{\pi}: X \to X$ permutation action

functions must be equivariant: $f(\hat{\pi}(x)) = \hat{\pi}(f(x))$

Permutations as constraints

 $(X, \hat{\pi})$, π permutation of \mathbb{N}

 $\hat{\pi}: X \to X$ permutation action

functions must be equivariant: $f(\hat{\pi}(x)) = \hat{\pi}(f(x))$

Cumulative hierarchy, FM-sets, \mathbb{N} urelements

Model of ZF but no C

Consider (\mathbb{N}, π)

Take the set of sets $\{\mathbb{N}\}$ containing just one set, \mathbb{N}

There is no choice function.

Model of ZF but no C

Consider (\mathbb{N}, π)

Take the set of sets $\{\mathbb{N}\}$ containing just one set, \mathbb{N}

There is no choice function.

Proof:

• observe $\pi(\mathbb{N}) = N$ and $\pi(n \in \mathbb{N}) \neq n$.

•
$$f(\mathbb{N}) = n \implies f(\pi(\mathbb{N})) = n \neq \pi(f(\mathbb{N}))$$

Syntax with binders In the permutation model

(Gabbay, Pitts 1999)

Abstract syntax: represent terms as trees

Nodes are operators, leaves are constants

Formally: initial algebras

"for all x in A(x)" "for all y in A(y)" "for all z in A(z)"

"for all x in A(x)" "for all y in A(y)" "for all z in A(z)"

infintely many indistinguishable variable names

"for all x in A(x)" "for all y in A(y)" "for all z in A(z)"

infintely many indistinguishable variable names

 $\lambda x.t$ $\forall a.\phi$ let $k = E_1 \operatorname{in} E_2$

"for all x in A(x)" "for all y in A(y)" "for all z in A(z)"

infintely many indistinguishable variable names

 $\begin{array}{lll} \lambda x.t & \forall a.\phi & \operatorname{let} k = E_1 \operatorname{in} E_2 \\ \lambda y.t[y/x] & \forall b.\phi[b/a] & \operatorname{let} h = E_1 \operatorname{in} E_2[h/k] \\ \lambda z.t[z/x] & \forall c.\phi[c/a] & \operatorname{let} s = E_1 \operatorname{in} E_2[s/k] \end{array}$

Abstract syntax with variable binding?

Abstract syntax with variable binding?

Initial algebras in the permutation model

Abstract syntax with variable binding?

Initial algebras in the permutation model

Makes sense: no canonical choice

There is no interesting variable name

Urelements are names

Urelements are names

if $\pi(x) \neq x$ and $\hat{\pi}(t) \neq t$, then say x is a name of t.

If the names of t are finite, all the others may be freely interchanged without t being affected.

These are fresh names.

Semantics of mobile systems

(Plenty of excellent people, since around 1990)¹

¹and the speaker

The π -calculus

Semantics is an equivalence relation!

But it's nonstandard (fresh resources)

The π -calculus

Semantics is an equivalence relation!

But it's nonstandard (fresh resources)

... just like α -equivalence and binding is "non-standard" abstract syntax

[Montanari-Pistore 1996-2000]

Use the permutation model to give standard coalgebraic semantics to the pi-calculus.

Urelements are resources

Urelements are resources

Fresh names can be observed

generated, and then communicated (appearing on labels of transitions)

Bisimulation up-to alpha-equivalence

Automata with infinite alphabets

From Kaminksi, Francez 1992, through several works still ongoing²

²includes the speaker

Finite state automata accept finite words

Symbols come from finite alphabets

What if the alphabet is infinite?

Mobile systems, multi-user, security

Automata with memory registers

[Francez, Kaminski 1992]

the automaton can consume symbols in registers, or store new ones

Decidability of boolean operations

"Finite-memory automata"

Automata in the permutation model have been defined [e.g. Bojanczyk, Klin, Lasota 2011]

Equivalence with Francez-Kaminski [Ciancia, Tuosto, Tzevelekos - technical report]

Automata in the permutation model have been defined [e.g. Bojanczyk, Klin, Lasota 2011]

Equivalence with Francez-Kaminski [Ciancia, Tuosto, Tzevelekos - technical report]

Urelements are symbols

"The language of words that start and end with the same symbol"

So many models of the same idea So many papers to count³

³too many, if you count the speaker

Presheaf categories

model abstract syntax with binding as initial algebras

model name generation with final coalgebras

[Fiore, Moggi, Sangiorgi, Turi, Cattani, Winskel,... 1993-1999] History dependent automata

states have registers

model name generation (in a finite way) [Montanari, Pistore, 1996]

enjoy final, standard coalgebraic semantics [Ciancia, Montanari 2012] And what about De Bruijn indices? And what about this and that ...

What about urelements?

Enter category theory

[Fiore-Staton 2006] Presheaves over finite sets, and HD-automata

[Gadducci, Miculan, Montanari 2006] Also permutation model, G-sets ...

[Ciancia, Montanari, 2010] Also De Bruijn indexes, with the proper choice of a Kan extension

Categorical equivalence

The morphisms matter more than the objects

Bidirectional translations

Categorical equivalence

The morphisms matter more than the objects

Bidirectional translations

up-to isomorphism

Urelements are the basic building block

[in presheaves] colimit completion

[in register automata & C] contents of registers

[in the permutation model] observables of elements

Nominal computation, and beyond

Nominal computation: study the theory of computation in variants of the permutation model

Nominal computation: study the theory of computation in variants of the permutation model

$P \neq NP$

Nominal computation: study the theory of computation in variants of the permutation model

$P \neq NP$

(but it's not the key point...)

Can we change the building blocks and retain the building?

Graphs [Montanari, Sammartino 2014]

Equivalence relations [Bonchi, Buscemi, Ciancia, Gadducci 2012]

Partial orders [Bruni, Montanari, Sammartino 2015]

Reminder:

The axiom of choice still does not hold!

thank you for listening