
73

Miscomputation in Software Development. 
Learning to Live with Errors
Tomas Petricek 
University of Cambridge, UK

Anyone who experienced a software error 
would agree that a computer program may 
not work correctly, but the notion of malfunc-
tion relies on an external specification, other 
than the program code1. If a program does not 
match its specification, this can be due to a 
number of reasons that have been classified 
in a recent taxonomy of miscomputations [7].

Large software systems rarely have a full 
specification, but they exhibit numerous kinds 
of errors. In this paper, I discuss different prac-
tical strategies that programmers throughout 
the history developed to deal with errors. Al-
though our focus is not on the historical deve-

1 The difficulty of treating software as malfun-
ctioning artifact has been discussed in [6].

lopments, we note an interesting change from 
the early days of computing (circa 1949):

Errors in coding were only gradually recog-
nized to be a significant problem: a typi-
cal early comment was that of Miller, who 
wrote that such errors, along with hard-
ware faults, could be “expected, in time, to 
become infrequent” [11, p. 254]

Since 1949, programmers not only learned 
that coding errors are a significant problem, 
but they also found many techniques for deal-
ing with them, ranging from ways to eliminate 
errors to methodologies that accept errors as 
a part of any complex system and found ways 
of living with them.

Error as a curse: Avoiding errors through proofs
The idealistic approach to miscomputation 
is that program behaviour should be formally 
specified and all possibilities of error should be 
avoided. This has first been made explicit in the 
Algol research programme, appearing in 1960s:

One of the goals of the Algol research 
programme was to utilize the resources of 
logic to increase the confidence (…) in the 
correctness of a program. As McCarthy 
had put it, “[i]nstead of debugging a pro-
gram, one should prove that it meets its 

specifications (…)” [11, p. 258]

Proving program correctness is only pos-
sible with respect to a specification. A full 
specification is rarely available, but many pro-
gramming languages allow specifying some 
aspects of the behaviour. In typed program-
ming languages, types can be seen as a limited 
form of specification. A type system ensures 
that “well-typed programs do not go wrong” 
(a famous slogan introduced by Milner in 1978 

[10]), meaning that properties expressed in 



Accepted abstracts

74

terms of types are guaranteed. Recent deve-
lopments in this direction aim to increase the 
expressivity of type systems, so that more pre-
cise specifications can be given2.

The nature of proofs about programs is a 

2 A recent example in this direction is [5].

complex topic, but it has attracted some at-
tention from historians and philosophers of 
science [9]. In contrast, other approaches for 
dealing with errors are less studied – and even 
advocates of the use of proofs are surprised 
that the software industry manages to produ-
ce working software without proofs [8].

Error as a progress: Test-driven development
Part of the success of software engineering 
can be attributed to testing. Testing cannot 
prove absence of errors, but it can provide a 
(practically useful) confirmation [1].

However, a recent software development 
methodology called test-driven development 
(TDD) uses the notion of tests in a different 
and perhaps more interesting way. In TDD, we 
write automated tests that detect certain er-
rors. However, tests do not serve only as a me-
chanism for avoiding errors. TDD uses them 
(and miscomputation) as the driving force 
behind development. As discussed by Beck, 
we “write new code only if an automated test 
has failed”.

We should first produce an isolated mi-
scomputation and then write code to remove 
it. Thus in TDD, tests replaces the (non-exi-
stent) formal specification – they define pro-
gram behaviour by specifying which miscom-

putations do not occur when the program is 
run. The methodology is described in terms of 
the Red-Green-Refactor mantra:

[1] Red  –  write a little test that doesn’t 
work (…).

[2] Green  –  Make the test work quickly, 
committing whatever sins necessary in 
the process.

[3] Refactor – Eliminate all of the duplica-
tion (…). [3]

In TDD, introducing a miscomputation 
deliberately becomes the first part of the de-
velopment cycle. Dealing with the error (fixing 
the test) is a way to implement the specifica-
tion; the third step is then a place where gen-
eralization from the specific tests occurs (as 
part of duplication elimination).

Error as the unavoidable: Let it crash
Although different, both approaches dis-
cussed so far aim to eliminate miscomputa-
tion from completed running programs. The 
concurrent language Erlang takes a different 
attitude characterised by the slogan “let it 
crash”. In the Erlang mind-set, an error refers 
to a situation where we do not have enough 
information to proceed:

Errors occur when the programmer does 
not know what to do. Programmers are 
supposed to follow specifications, but of-
ten the specification does not say what to 
do and therefore the programmer does not 
know what to do. [2]

The citation explicitly quotes the situation 
when a program specification is incomplete 



Preliminary Proceedings of the 
Third International Conference on the History and Philosophy of Computing (HaPoC 2015)

75

and does not provide an explicit guidance. In 
that case, an ideal program would perform the 
“right” operation  –  but without a specifica-
tion, a program miscomputes. In Erlang, this is 
expected and programmers have a strategy for 
dealing with such errors:

What kind of code must the programmer 
write when they find an error? The philos-
ophy is let some other process fix the error, 
but what does this mean for their code? 

The answer is let it crash.

Erlang has a sophisticated supervision 
model – a supervisor process typically restarts 
the worker process (and logs the details of the 
miscomputation), so that the worker can con-
tinue performing other valid operations.

Thus miscomputation in Erlang is miti-
gated by the system and is expected during 
regular program execution.

Error as an inspiration: Live coding
Miscomputation takes yet another form when 
we treat computation as an interaction. The 
first programming environment that used 
this style was Smalltalk in 1970s. More recent 
work includes live coding environments for 
performing music. Our metaphors for mis-
computation change accordingly:

An error in the performance of classical mu-
sic occurs when the performer plays a note that 
is not written on the page. In musical genres that 
are not notated so closely (…), there are no wrong 
notes – only notes that are more or less appro-
priate to the performance. [4]

A musical genre that is not closely notated 
corresponds to a program that does not have 
a precise specification. This is typical for many 
software engineering projects – there are some 
general guidelines, but no full specification. In 
programming, the idea appeared through live 
coding where programmers interact with the 
running system live through code:

[Live coders may] accept the results of an 
imperfect execution. [They] might perhaps 
compensate for an unexpected result by 
manual intervention (like a guitarist lifting 
his finger from a discordant note), or even 
accept the result as a serendipitous alter-
native to the original note. [4]

It is easy to understand this approach in 
music, but that is just one of the domains. In 
Smalltalk, live coding can be used to interac-
tively change a running system in response to 
errors. The interesting point is that making 
miscomputation apparent (we hear a disso-
nant note) enables live coder to quickly react 
and correct the behaviour. The reaction time 
appears to be an important aspect of live cod-
ing – the approach can work well in scenarios 
where timely human interaction is possible 
(typical web applications, but not e.g. an air-
bag control system in a car).

Conclusions
Perhaps the most interesting message from 
the paper is that miscomputation does not 
always have to be fully avoided. Avoiding 
miscomputation at all cost (through for-
mal proofs or thorough testing) is the most 

common technique, but there are interesting 
alternatives that embrace miscomputation 
and accept it as an ordinary part of software 
development, software execution or even ob-
servable software behaviour.



Accepted abstracts

76

References
[1] N. Angius, “The Problem of Justification of Empiri-

cal Hypotheses in Software Testing”, Philosophy & 
Technology 27(3), 2014, pp. 423-439.

[2] J. Armstrong, Making reliable distributed systems in 
the presence of software errors. PhD dissertation, 
2003.

[3] K. Beck, Test driven development by example. Ad-
dison Wesley, 2002.

[4] A. Blackwell, N. Collins, “The programming lan-
guage as a musical instrument”, Proceedings of 
PPIG, 2005.

[5] A. Chlipala, Certified Programming with Dependent 
Types. MIT Press, 2013.

[6] L. Floridi, N. Fresco, G. Primiero, “On malfunction-

ing software”, Synthese 192(4), 2015, pp. 1199-1220.
[7] N. Fresco, G. Primiero, “Miscomputation”, Philoso-

phy and Technology 26, 2013, 253-272.
[8] C.A.R. Hoare, “How Did Software Get So Reliable 

Without Proof?”, Proceedings of FME, 1996.
[9] D. MacKenzie, Mechanizing Proof: Computing, Risk, 

and Trust. MIT Press, 2004.
[10] R. Milner, “A theory of type polymorphism in pro-

gramming”, Journal of computer and system sci-
ences 17(3), 1978, pp. 348-375.

[11] M. Priestley, A Science of Operations: Machines, 
Logic and the Invention of Programming, Springer, 
2011.


