
58

Several Types of Types in Programming Languages
Simone Martini 
University of Bologna, Italy & INRIA Sophia-Antipolis, France

We seldom realise that the concept of “type” 
in programming languages we understand 
nowadays is not the same it was perceived 
in the sixties, and that it was largely absent 
in the programming languages of the fifties. 
Moreover, we now superpose the concept of 
“type” in programming languages with the 
concept of the same name in mathematical 
logic – an identification which may be good 
for today, but which is the result of a (slow) 
convergence of two different paths. Tracing 
this story with the accuracy it merits, it is well 
beyond the limits of this paper. We will simply 
make several remarks (some historical, some 
of more conceptual character) that we hope 
will be useful as a basis for a further investiga-

tion. The thesis we will argue is that there are 
three different characters at play in program-
ming languages, all of them now called types: 
the technical concept used in language design 
to guide implementation; the general abstrac-
tion mechanism used as a modelling tool; the 
classifying tool inherited from mathematical 
logic. We will suggest three possible dates 
ad quem for their presence in the program-
ming language literature, suggesting that the 
emergence of the concept of type in computer 
science is relatively independent from the logi-
cal tradition, until the Curry-Howard isomor-
phism will make an explicit bridge between 
them.

From types to “types”
The first question is when the word “type” en-
tered the technical jargon. Contrary to folklore, 
early documentation on FORTRAN does not 
use the word, at least in the technical sense. It 
uses “type” in a generic sense, where “kind” or 
“class” could be used (e.g., “32 types of state-
ment”). For a precise occurrence of our techni-
cal term we must wait for the report on Algol 
58 [10]. There, “type” is used as a collective 
representative for “special types, e.g., integral, 
or Boolean” (page 12). Algol 58 is the result 
of a meeting held in May 1958, between an 
ACM group and a European group. Both pre-

paratory papers do not use “type”. It is dur-
ing meeting that the committee realised that 
different concepts could be grouped together, 
and given a name as a collective – types were 
born. It is also remarkable that, at least from 
these references, there is no clue that in this 
process the term “type” from mathematical 
logic had any role. The process will come to 
maturity in Algol 60 [1]: “The various “types” 
(integer, real, Boolean) basically denote prop-
erties of values”. Observe the word “types” 
under quotes, as to stress that it is no longer 
the ordinary word, but the technical one.



Preliminary Proceedings of the 
Third International Conference on the History and Philosophy of Computing (HaPoC 2015)

59

Data types and abstractions
Algol 58 treats arrays separately from types, 
and Algol 60 makes no change in this – types 
denote properties of just “simple” values. To 
enlarge Algol’s primitive data, [7] advocates 
the definition of new data spaces (Cartesian 
product, disjoint union, power set) in terms 
of given base spaces. McCarthy’s paper is at a 
general, meta-level, but it sets a roadmap on 
how to introduce new types in programming 
languages – instead of inventing a new palette 
of primitive types, provide general, abstract 
mechanisms for the construction of new types 
from the base ones. The challenge to amend 
the “weakness of Algol” was taken up in more 
concrete forms, and in similar ways, by Hoare 
[4], and Dahl and Nygaard [3], around 1965. 
Of these two papers it will be Hoare’s one 
to have the major, immediate impact – with 
an explicit reference to McCarthy’s project it 
introduces at the same time the concepts of 
(dynamically allocated) record and typed refer-
ence. The paper is fundamental because types 
change their ontology  –  from an implemen-
tation issue, they programmatically become a 

general abstraction mechanism. This happens 
at three levels. First, it implements McCarthy’s 
project into a specific programming language, 
extending the concept of type from simple to 
structured values, thus opening the way to 
the modern view of datatypes. Second, types 
are explicitly proposed as a linguistic model-
ling tool – a record type naturally represents a 
class of complex and articulated values. Finally, 
the combination of record types and typed 
references provides a robust abstraction over 
the memory layout used to represent them, 
because the type checker may statically verify 
that the field of a record obtained by derefer-
encing is of the correct type required by the 
context – primitive types are true abstractions 
over their representation. Hoare’s proposal 
will find its context into [13], and finally will 
be implemented in Algol W [12], which will 
have a significant impact and is an important 
precursor of Pascal. It will be [9] to bring to 
full development the types as an abstraction 
mechanism, which will be further elaborated 
and formulated in modern terminology in [11].

Classifying values
Types in mathematical logic are a discipline 
for separating formulas denoting values from 
formulas that “do not denote”. The opposi-
tion “denoting” vs. “non denoting” becomes, 
in programming languages, “non producing 
errors” vs. “producing errors”. Types as a clas-
sifying discipline for programs are found in 
the programming language literature as early 
as in the PhD thesis of Morris [8]. But the 
connection to types of logic is implicit, even 
unacknowledged. A lack of acknowledgement 
which is going to persist – none of [9] or [11] 
cites any work using types in logic. Certainly 
the Zeitgeist was ripe for the convergence of 

the two concepts; the Curry-Howard isomor-
phism [5] will be the catalyst for the actual 
recognition1, which comes only in [6], written 
and circulated in 1979, which presents a com-
plete correspondence between proof-theory 
and functional languages. This slow mutual 
recognition of the two fields tells a lot on their 
essential differences. For most of the “types-
as-a-foundation-of-mathematics” authors, 
types where never supposed to be actually 

1	 For a lucid account of the interplay between 
types, constructive mathematics, and lambda-
calculus in the Seventies, see [2], Section 8.1.



Accepted abstracts

60

used by the working mathematician. It was 
sufficient that in principle most of the math-
ematics could be done in typed languages. 
Types in programming languages, on the con-
trary, while being restrictive in the same sense, 
are used everyday by the working computer 
programmer. And hence, from the early days, 
computer science had to face the problem to 
make types more “expressive”, and “flexible”. 

The crucial point, here and in most computer 
science applications of mathematical logic 
concepts and techniques, is that computer 
science never used ideological glasses (types 
per se; constructive mathematics per se; etc.), 
but exploited what it found useful for the de-
sign of more elegant, economical, usable ar-
tefacts. But this is the subject of an entirely 
different paper.

References
[1]	 J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCar-

thy, A.J. Perlis, H. Rutishauser, K. Samelson, B. Vau-
quois, J.H. Wegstein, A. van Wijngaarden, M. Wood-
ger, “Report on the algorithmic language ALGOL 
60”, Communications of ACM 3(5), 1960, pp. 299-314.  

[2]	 F.  Cardone, J.R.  Hindley, “Lambda-calculus and 
combinators in the 20th century”, in D.M.  Gabbay, 
J. Woods (eds.), Logic from Russell to Church, vol-
ume 5 of Handbook of the History of Logic, North-
Holland, 2009, pp. 723 – 817.

[3]	 O.-J.  Dahl, K.  Nygaard, “Simula: An ALGOL-based 
simulation language, Communications of ACM 9(9), 
1966, pp. 671-678.  

[4]	 C.A. R. Hoare, “Record handling”, ALGOL Bulletin 21, 
1965, pp. 39-69.  

[5]	 W.A.  Howard, “The formulae-as-types notion of 
construction”, in J.P. Seldin and J.R. Hindley (eds.), 
To H.B. Curry: Essays on Combinatory Logic, Lamb-
da Calculus  and Formalism, Academic Press, 1980, 
pp. 479-490.

[6]	 P. Martin-Löf, “Constructive mathematics and com-
puter programming”, in L.J.  Cohen and  al. (eds.) 
Logic, Methodology and Philosophy of Science VI, 
1979, North- Holland, 1982, pp. 153-175.

[7]	 J.  McCarthy, “A basis for a mathematical theory 
of computation, preliminary report”, in Papers 
Presented at the May 9-11, 1961, Western Joint IRE-
AIEE-ACM Computer Conference, IRE-AIEE-ACM ’61 
(Western), 1961, pp. 225-238.  

[8]	 J.H.  Morris, Lambda-calculus models of program-
ming languages. PhD thesis, MIT, December 1968.  

[9]	 J.H. Morris, “Types are not sets”, in Proceedings of 
the 1st Annual ACM SIGACT-SIGPLAN Symposium on 
Principles of Programming Languages, ACM, 1973, 
pp. 120-124.  

[10]	 A.J. Perlis, K. Samelson, “Preliminary report: Inter-
national algebraic language”, Communications of 
ACM 1(12), 1958, pp. 8-22.

[11]	 J.C. Reynolds, “Towards a theory of type structure”, 
in Programming Symposium Proceedings. Colloque 
sur la programmation, Springer, 1974, pp. 408-423.  

[12]	 R.L.  Sites, “Algol W reference manual”, Technical 
Report STAN-CS-71-230, Computer Science Depart-
ment, Stanford University, 1972.  

[13]	 N. Wirth, C.A.R. Hoare, “A contribution to the de-
velopment of ALGOL”, Communications of ACM 9(6), 
1966, pp. 413-432.  


