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Wherefore thou art … Semantics of Computation?
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University of Udine, Italy

The power of digital simulation combined 
with the elementary simplicity of Universal 
Computational Models (e.g. Turing Machines, 
Church’s λ-calculus, Curry’s Combinatory 
Logic, cellular automata, …) is apparently the 
Pythagorean dream made true, but because 
of the remoteness and gratuitousness of 
Computational Models it is also the original 
sin of Computing. In effect, the dynamics of 
token/symbol manipulation in such models 
is too idiosyncratic to be insightful. Hence, 
the more computers are used in life-critical 
applications, the more incumbent are digital 
woes due to potentially incorrect software. To 
achieve correct software, i.e. software which 
meets its specifications, we need to establish 
a formal correspondence between low level 
peculiarities and higher level conceptual un-
derstandings. This amounts to defining formal 
Semantics of programming languages [26] 
and addressing the related critical issue of ad-
equacy of formalizations and encodings, which 
are ultimately irreducible to formalization [11, 
12, 18].

I will try to outline a brief history of the 
quest for a Final Semantics in Computing.

The initial paradigm, since the 60’s, was 
that of Denotational Semantics: the meaning 
of a program is a function (an algorithm being 
a total function), whose behavior is captured 
by certain logical invariants called types or by 
observations. This approach used λ-calculus, 
which is a theory of functions, as the canonical 
computational model. Every language com-
ponent received a functional interpretation. 

Categorically speaking, this approach is syntax 
directed and can be termed initial semantics, 
in that the interpretation function is an initial 
algebra-morphism which maps uniquely the 
algebraic structure of the syntax, of the pro-
gramming language, to a set of abstract en-
tities called denotations. The crucial property 
of the interpretation function is compositional-
ity, namely the (algebraic) inductive structure 
of the syntax is reflected by the semantics, 
which therefore must feature a similar, but 
conceptually independent, algebraic struc-
ture. Hence this semantics is extensional and 
referentially transparent. Denotations are usu-
ally morphisms in suitable categories such as, 
possibly higher order, topological spaces, or 
domains [24, 21, 22, 25]. The added value of 
domains comes from the fact that they are 
endowed with an enriched structure. This al-
lows for natural definitions of recursive objects, 
since all endomorphisms have fixed points and 
for approximations, and hence for new proof 
principles for reasoning on programs, such as 
Fixed Point Induction. Semantics is, ultimately, 
just an equivalence relation, in fact a congru-
ence relation. The methodology of Program 
Synthesis through Program Equivalence capital-
izes on this understanding of semantics. The 
drawbacks of Denotational Semantics are 
that it does not account for the dynamics of 
computation (Girard’s criticism [10]) and that 
it introduces non-standard objects which are 
not syntactically definable, causing the models 
not to be Fully Abstract [22], let alone Fully 
Complete.
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Research in the semantics of λ-calculus 
led to establish also a correspondence be-
tween two, apparently unrelated, logical 
processes: computation and derivation, called 
Propositions-as-types and Proofs-as-Programs 
paradigm, pioneered by Curry and Howard. 
The question “what is the semantics of Com-
putation?” then goes hand in hand with the 
question “what is the semantics of a Proof?”. 
Martin-Löf [19] and Girard [9, 10], developed 
extensively this analogy whereby the process 
of proof normalization becomes the canonical 
Computational Model. The practical outcome 
of this view is that from a proof of a specifica-
tion in a suitable constructive logic one can 
extract a correct terminating program meet-
ing that specification. This led to the program 
extraction from proofs paradigm and the devel-
opment of proof editors like Coq and LF [6, 
11, 12, 18].

A different strand of semantics arose from 
the study of Concurrent Systems and their dy-
namics as processes [20, 1, 8]. All the previ-
ous approaches dealt adequately only with 
terminating programs. But non-terminating 
programs are just as important as algorithms, 
even if they do not immediately compute a 
function. E.g. what functions, if at all, do the 
internet or an operating system, compute? 
Circular and infinite objects, such as streams, are 
just as pervasive as initial datatypes [7, 13, 16]. 
Besides having an algebraic structure, the syn-
tax of processes can be immediately endowed 
with the co-algebraic structure deriving from 
the operational behavior (transition systems). 
This provides a dual kind of semantics w.r.t 
domains, whereby the interpretation function 
can be construed as the unique final morphism 
mapping the co-algebra induced by the be-
havior on syntax into the final co-algebra [5]. 
This semantics can be viewed as model-orient-
ed and has been termed Final Semantics. Also 
Final Semantics [23, 15] yields equivalence re-

lations on processes, called strong extensionali-
ty [7] or bisimilarity, and provides original proof 
principles, such as the Co-induction Principles, 
for establishing it. This semantics, however, is 
not immediately compositional w.r.t the alge-
braic structure of the syntax, but it provides 
more easily fully complete and fully abstract 
models, which often arise as term models.

Since the distance between behavior and 
denotational semantics reduces, what is the 
point of Semantics, then? Semantics provides 
a kind of partita doppia, a duality, which en-
forces some kind of invariant. One can check 
the outcome in two conceptually entirely dif-
ferent ways, one bottom-up, algebraic, obser-
vational, denotational, initial, the other top-
down, co-algebraic, intentional, behavioral, 
final. Think about propositional calculus truth 
values vs Tableaux semantics (proof search); 
or grammars and regular expressions vs recog-
nizing automata.

A very significant leap forward was 
achieved by Girard [10] in the late 80’s when 
he succeeded in conceiving a denotational se-
mantics for the dynamics of Computational 
Models. This approach, called Geometry of In-
teraction, was further developed by Abramsky 
[1, 4, 2] and many others leading to what is 
called Game Semantics. This semantics cov-
ers Linear Logic [9] as well as all the features 
of programming languages. It yields compo-
sitional equivalences, but the very evaluation 
process itself has a “denotational” counterpart 
in the semantics. Programs are not construed 
anymore as input-output functions but as 
strategies on moves, or operators on informa-
tion flows.

A very simple but intriguing Universal 
Computational Model, along this lines, is that 
of pattern-matching automata, introduced by 
Abramsky [2] and inspired by Girard [10]. 
Combinatory Logic terms are interpreted as 
automata operating on a simple tree language. 
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At top level the automata model combina-
tory reduction, but their operational behavior 
is explained in a bottom-up compositional 
fashion. Denotations have a dynamics which 
parallels, but also abstracts the idiosyncratic 

dynamics on the syntax, thus meeting Gi-
rard’s requirements. Evaluation amounts to 
normalization, in fact minimization, since the 
automaton normalizes to a minimal (strongly 
extensional) automaton [17].
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