
7

Wherefore thou art … Semantics of Computation?
Furio Honsell
University of Udine, Italy

The power of digital simulation combined
with the elementary simplicity of Universal
Computational Models (e.g. Turing Machines,
Church’s λ-calculus, Curry’s Combinatory
Logic, cellular automata, …) is apparently the
Pythagorean dream made true, but because
of the remoteness and gratuitousness of
Computational Models it is also the original
sin of Computing. In effect, the dynamics of
token/symbol manipulation in such models
is too idiosyncratic to be insightful. Hence,
the more computers are used in life-critical
applications, the more incumbent are digital
woes due to potentially incorrect software. To
achieve correct software, i.e. software which
meets its specifications, we need to establish
a formal correspondence between low level
peculiarities and higher level conceptual un-
derstandings. This amounts to defining formal
Semantics of programming languages [26]
and addressing the related critical issue of ad-
equacy of formalizations and encodings, which
are ultimately irreducible to formalization [11,
12, 18].

I will try to outline a brief history of the
quest for a Final Semantics in Computing.

The initial paradigm, since the 60’s, was
that of Denotational Semantics: the meaning
of a program is a function (an algorithm being
a total function), whose behavior is captured
by certain logical invariants called types or by
observations. This approach used λ-calculus,
which is a theory of functions, as the canonical
computational model. Every language com-
ponent received a functional interpretation.

Categorically speaking, this approach is syntax
directed and can be termed initial semantics,
in that the interpretation function is an initial
algebra-morphism which maps uniquely the
algebraic structure of the syntax, of the pro-
gramming language, to a set of abstract en-
tities called denotations. The crucial property
of the interpretation function is compositional-
ity, namely the (algebraic) inductive structure
of the syntax is reflected by the semantics,
which therefore must feature a similar, but
conceptually independent, algebraic struc-
ture. Hence this semantics is extensional and
referentially transparent. Denotations are usu-
ally morphisms in suitable categories such as,
possibly higher order, topological spaces, or
domains [24, 21, 22, 25]. The added value of
domains comes from the fact that they are
endowed with an enriched structure. This al-
lows for natural definitions of recursive objects,
since all endomorphisms have fixed points and
for approximations, and hence for new proof
principles for reasoning on programs, such as
Fixed Point Induction. Semantics is, ultimately,
just an equivalence relation, in fact a congru-
ence relation. The methodology of Program
Synthesis through Program Equivalence capital-
izes on this understanding of semantics. The
drawbacks of Denotational Semantics are
that it does not account for the dynamics of
computation (Girard’s criticism [10]) and that
it introduces non-standard objects which are
not syntactically definable, causing the models
not to be Fully Abstract [22], let alone Fully
Complete.

Invited speakers

8

Research in the semantics of λ-calculus
led to establish also a correspondence be-
tween two, apparently unrelated, logical
processes: computation and derivation, called
Propositions-as-types and Proofs-as-Programs
paradigm, pioneered by Curry and Howard.
The question “what is the semantics of Com-
putation?” then goes hand in hand with the
question “what is the semantics of a Proof?”.
Martin-Löf [19] and Girard [9, 10], developed
extensively this analogy whereby the process
of proof normalization becomes the canonical
Computational Model. The practical outcome
of this view is that from a proof of a specifica-
tion in a suitable constructive logic one can
extract a correct terminating program meet-
ing that specification. This led to the program
extraction from proofs paradigm and the devel-
opment of proof editors like Coq and LF [6,
11, 12, 18].

A different strand of semantics arose from
the study of Concurrent Systems and their dy-
namics as processes [20, 1, 8]. All the previ-
ous approaches dealt adequately only with
terminating programs. But non-terminating
programs are just as important as algorithms,
even if they do not immediately compute a
function. E.g. what functions, if at all, do the
internet or an operating system, compute?
Circular and infinite objects, such as streams, are
just as pervasive as initial datatypes [7, 13, 16].
Besides having an algebraic structure, the syn-
tax of processes can be immediately endowed
with the co-algebraic structure deriving from
the operational behavior (transition systems).
This provides a dual kind of semantics w.r.t
domains, whereby the interpretation function
can be construed as the unique final morphism
mapping the co-algebra induced by the be-
havior on syntax into the final co-algebra [5].
This semantics can be viewed as model-orient-
ed and has been termed Final Semantics. Also
Final Semantics [23, 15] yields equivalence re-

lations on processes, called strong extensionali-
ty [7] or bisimilarity, and provides original proof
principles, such as the Co-induction Principles,
for establishing it. This semantics, however, is
not immediately compositional w.r.t the alge-
braic structure of the syntax, but it provides
more easily fully complete and fully abstract
models, which often arise as term models.

Since the distance between behavior and
denotational semantics reduces, what is the
point of Semantics, then? Semantics provides
a kind of partita doppia, a duality, which en-
forces some kind of invariant. One can check
the outcome in two conceptually entirely dif-
ferent ways, one bottom-up, algebraic, obser-
vational, denotational, initial, the other top-
down, co-algebraic, intentional, behavioral,
final. Think about propositional calculus truth
values vs Tableaux semantics (proof search);
or grammars and regular expressions vs recog-
nizing automata.

A very significant leap forward was
achieved by Girard [10] in the late 80’s when
he succeeded in conceiving a denotational se-
mantics for the dynamics of Computational
Models. This approach, called Geometry of In-
teraction, was further developed by Abramsky
[1, 4, 2] and many others leading to what is
called Game Semantics. This semantics cov-
ers Linear Logic [9] as well as all the features
of programming languages. It yields compo-
sitional equivalences, but the very evaluation
process itself has a “denotational” counterpart
in the semantics. Programs are not construed
anymore as input-output functions but as
strategies on moves, or operators on informa-
tion flows.

A very simple but intriguing Universal
Computational Model, along this lines, is that
of pattern-matching automata, introduced by
Abramsky [2] and inspired by Girard [10].
Combinatory Logic terms are interpreted as
automata operating on a simple tree language.

Preliminary Proceedings of the
Third International Conference on the History and Philosophy of Computing (HaPoC 2015)

9

At top level the automata model combina-
tory reduction, but their operational behavior
is explained in a bottom-up compositional
fashion. Denotations have a dynamics which
parallels, but also abstracts the idiosyncratic

dynamics on the syntax, thus meeting Gi-
rard’s requirements. Evaluation amounts to
normalization, in fact minimization, since the
automaton normalizes to a minimal (strongly
extensional) automaton [17].

References
[1] S. Abramsky, “Retracing some paths in Process Al-

gebra”, CONCUR, LNCS, Springer 1996.
[2] S. Abramsky, “A Structural Approach to Reversible

Computation”, Theoretical Computer Science 347(3),
2005.

[3] S. Abramsky, “Two Puzzles About Computation”, in
S.B. Cooper, J. van Leeuwen (eds.), Alan Turing: his
work and impact, Elsevier 2013, pp. 53-57.

[4] S. Abramsky, M. Lenisa, “Linear realizability and full
completeness for typed lambda-calculi”, Annals of
Pure and Applied Logic 134(2-3), 2005.

[5] P. Aczel, “Final Universes of Processes”, MFPS,
LNCS, Springer 1993.

[6] T. Coquand, G. Huet et al., The Coq Proof Assistant,
http://coq.inria.fr

[7] M. Forti, F. Honsell, “Set Theory with Free Construc-
tion Principles”, Annali della Scuola Normale Supe-
riore di Pisa – Classe di Scienze, Sér. 4 10(3), 1983.

[8] F. Gadducci, “Graph rewriting for the pi-calculus”,
Mathematical Structures in Computer Science 17(3),
2007.

[9] J.Y. Girard, “Linear logic”, Theoretical Computer Sci-
ence 50, 1987.

[10] J.Y. Girard, “Geometry of interaction I: interpreta-
tion of system F”, Logic Colloquium, North-Holland
1989.

[11] R. Harper, F. Honsell, G.D. Plotkin, “A framework for
defining logics”, Journal of ACM 40(1), 1993.

[12] F. Honsell, “25 years of formal proof cultures: some
problems, some philosophy, bright future”, LFMTP,
ACM 2013.

[13] F. Honsell, M. Lenisa, “Conway games, algebraically
and coalgebraically”, Logical Methods in Computer
Science 7(3), 2011.

[14] F. Honsell, M. Lenisa, “Unfixing the Fixpoint: The

Theories of the λY-Calculus”, Computation, Logic,
Games, and Quantum Foundations, LNCS, Springer
2013.

[15] F. Honsell, M. Lenisa, R. Redamalla, “Coalgebraic
semantics and observational equivalences of an im-
perative class-based OO-language”, Computational
Metamodels, ENTCS 104, Elsevier 2004.

[16] F. Honsell, M. Lenisa, R. Redamalla, “Categories of
coalgebraic games”, MFCS, LNCS, Springer 2012.

[17] F. Honsell, M. Lenisa, I. Scagnetto, “The Theory of
Automatic Combinators”, draft, 2015.

[18] F. Honsell, L. Liquori, I. Scagnetto, “LaxF: Side Con-
ditions and External Evidence as Monads”, MFCS,
LNCS, Springer 2014.

[19] P. Martin-Löf, Intuitionistic type theory, Bibliopolis,
1984.

[20] R. Milner, A Calculus of Communicating Systems,
LNCS, Springer 1980.

[21] G.D. Plotkin, “Call-by-Name, Call-by-Value and the
lambda-Calculus”, Theoretical Computer Science
1(2), 1975.

[22] G.D. Plotkin, “LCF Considered as a Programming
Language”, Theoretical Computer Science 5(3), 1977.

[23] J.J.M.M. Rutten, “Universal coalgebra: a theory
of systems”, Theoretical Computer Science 249(1),
2000.

[24] D.S. Scott, “Continuous Lattices”, in F.W. Lawvere
(ed.), Toposes, Algebraic Geometry and Logic, LNM
274, Springer 1972.

[25] D.S. Scott, “Domains for denotational semantics”,
ICALP, LNCS, Springer 1982.

[26] T.B. Steel Jr. (ed.), Formal Language Description
Languages for Computer Programming, North Hol-
land, 1966.

