
39

McCarthy’s LISP and Basis 
for Theory of Computation
Hong-Yi Dai 
University of Edinburgh, UK

It is well-known that LISP is an algebraic list-
processing language designed for artificial in-
telligence, dedicated to symbolic computation, 
powered by function orientation, enhanced by 
program manipulation, and underpinned by 
garbage collection. Ever since it was born, LISP 
has been celebrated by practitioners as a genu-
ine high-level, functional- and meta-program-
ming language for potentially hard problems 
involving symbol manipulation. Largely overlo-
oked is that LISP can also serve as a formalism 
for theory of computation. Indeed, it embraces 
and integrates ideas from all three major cha-
racterizations of computation, namely lambda 
calculus, general recursive function, and Tu-
ring machine. Unfortunately, both LISP itself 
and the formal basis distilled from it were not 
well received for theory of computation.  50 
years later, given prominent and promising 
developments of the programming-language 
approach to computability and complexity, it 
is time to give McCarthy’s pioneering work a 
reappraisal. We proceed as follows.

First, we review the development of 
LISP. We start with McCarthy’s motivation for 
designing a programming language for artifi-
cial intelligence, and the inspirations behind 
the initial set of features: algebraic notation 
and list processing. Of other language features 
outlined in the 1st AI memo [7], we pay par-
ticular attention to two, namely conditional 
expression and recursive function definition 
(making use of the former), both later be-

coming the key components of McCarthy’s 
“basis for a mathematical theory of compu-
tation” [12]. We note two revisions to the 
language documented in two subsequent AI 
memos  –  Memo 3 [8] introducing garbage 
collection and refining list operations, Memo 4 
[9] adopting Church’s -notation (to facilitate 
higher-order functions) and naming the lan-
guage LISP (short for LISt Processor) – which 
simplified it to such an extent that McCarthy 
agilely realized its capability to describe com-
putable functions in a much neater way “than 
the Turing machines or general recursive defi-
nitions used in [computable]1 function theo-
ry” [15, p. 219]. We highlight McCarthy’s cast 
of LISP “both as a programming language and 
as a formalism for doing [computable] fun-
ction theory” [15, p. 219] in the 8th AI memo 
[10] (draft of the landmark paper [11]) where 
he showed two similarities between LISP and 
Turing machine: one shallow by simulating Tu-
ring machine in LISP, the other deep by giving 
a universal function in LISP for LISP.

Second, we revisit McCarthy’s computa-
tion-theoretical basis [12] distilled from LISP 
by parameterizing the computation domain. 
We briefly mention some elementary results in 
traditional theory of computation McCarthy 
reproduced in the formalism obtained by in-

1	 Following Soare’s recommendation [17], we 
substitute the word computable for recursive in 
the term recursive function theory.



Accepted abstracts

40

stantiating the computation domain with the 
set of natural numbers. We also cover some 
formal properties of the basis that, as Mc-
Carthy demonstrated, enable one to prove 
the equivalence of computations expressed in 
formalisms of various instantiations. We then 
turn to the unfortunate fact that, despite Mc-
Carthy’s efforts, both LISP and its formal ba-
sis were not well received for theory of com-
putation, not by his students of theoretical 
background nor by other researchers of theo-
retical expertise, a representative of the former 
group being Park [19], while one of the latter 
being Davis [1968]. We identify two reasons 
for the ill-reception: (1) LISP, focusing on the 
practical issue of briefly and straightforwardly 
expressing particular computable functions, 
“didn’t address the questions that interested 
[computable-function theorists]” [15, p. 219]; 
(2) despite some initial results, those theorists 
remained “unconvinced of the theoretical2 uti-
lity of any” of the formalisms [3]. However, 
we find inheritance of McCarthy’s metho-
dology in work decades later [5, 18, 4] that 

2	 Davis’ emphasis.

approached computability and complexity via 
programming languages and that developed 
sufficiently far to confront Park, Davis and 
others. Moreover, we see the heritage further 
into current research and development of im-
plicit computational complexity [6, 2].

Looking back, we notice that McCarthy’s 
discovery of LISP as a formalism for theory of 
computation might be somewhat accidental. 
However, we also sense a kind of necessity, 
owing to his position that “the question of 
whether there are limitations in principle of 
what problems man can make machines sol-
ve for him as compared to his own ability to 
solve problems, really is a technical question 
in [computable] function theory” [13, p. 28]. 
This position, from nowadays point of view a 
misconception may it be, however, helped set-
tle the design of LISP. Looking forward, we see 
that the programming-language approach to 
theory of computation McCarthy pioneered is 
shining again. Moreover, McCarthy’s hope for 
a relationship between computation and ma-
thematical logic “as fruitful in [this] century as 
that between analysis and physics” [14, p. 69] 
is coming true.

Acknowledgment
We appreciate Herbert Stoyan’s donation of 
his Lisp archive to the Computer History Mu-
seum [1]. We especially thank Paul McJones 
of the museum’s Software Preservation Group, 

for his dedicated efforts to preserve as many 
historical materials on Lisp [16], and also for 
his kind support of this work and constructive 
comments on this report.

References
[1]	 Computer History Museum (ed.), “The Herbert 

Stoyan Collection on LISP Programming”. Lot Num-
ber X5687.2010, 2010.

[2]	 U. Dal Lago, “A Short Introduction to Implicit Com-
putational Complexity”, in N. Bezhanishvili, G. Va-
lentin (eds.), Lectures on Logic and Computation, 

Lecture Notes in Computer Science 7388, Springer, 
2012, pp. 89-109.

[3]	 M. Davis, “Review: John McCarthy, a Basis for a 
Mathematical Theory of Computation, Preliminary 
Report; J: McCarthy, P.  Braffort, D. Hirschberg, a 
Basis for a Mathematical Theory of Computation”. 



Preliminary Proceedings of the 
Third International Conference on the History and Philosophy of Computing (HaPoC 2015)

41

Journal of Symbolic Logic 33(1). 1968.
[4]	 N.D. Jones, Computability and Complexity: from a 

Programming Perspective, The MIT Press, 1997.
[5]	 A.J. Kfoury, R.N. Moll, M.A. Arbib, A Programming 

Approach to Computability, Springer, 1982.
[6]	 S. Martini, Implicit Computational Complexity, 

http://homes.di.unimi.it/~sel/scuola2009/martini-
aila-2.pdf, 2009

[7]	 J. McCarthy, An Algebraic Language for the Mani-
pulation of Symbolic Expressions. AI Memo 1. Cam-
bridge, MA, USA: Artificial Intelligence Laboratory; 
Massachusetts Institute of Technology, 1958.

[8]	 J. McCarthy, Symbol Manipulating Langua-
ge – Memo 3 – Revisions of the Language. AI Memo 
3. Cambridge, MA, USA: Artificial Intelligence La-
boratory; Massachusetts Institute of Technology, 
1958.

[9]	 J. McCarthy, Symbol Manipulating Langua-
ge – Memo 4 – Revisions of the Language. AI Memo 
4. Cambridge, MA, USA: Artificial Intelligence La-
boratory; Massachusetts Institute of Technology, 
1958.

[10]	 J. McCarthy, Recursive Functions of Symbolic Ex-
pressions and Their Computation by Machine. AI 
Memo 8. Cambridge, MA, USA: Artificial Intelligen-
ce Laboratory; Massachusetts Institute of Techno-
logy, 1959.

[11]	 J. McCarthy“Recursive Functions of Symbolic Ex-
pressions and Their Computation by Machine, Part 
I”. Communications of ACM 3(4), 1960, pp. 184-95.

[12]	 J. McCarthy, “A Basis for a Mathematical Theory of 
Computation, Preliminary Report”. In Papers Pre-
sented at the May 9-11, 1961, Western Joint IRE-AIEE-
ACM Computer Conference, ACM, 1961, pp. 225-38.

[13]	 J. McCarthy, “Towards a Mathematical Science of 
Computation”. In IFIP Congress, 1962, pp. 21-28.

[14]	 J. McCarthy, “A Basis for a Mathematical Theory 
of Computation”. In Computer Programming and 
Formal Systems, P.  Braffort, D.  Hirschberg (eds.), 
North-Holland, 1963, pp. 33-70.

[15]	 J. McCarthy, “History of LISP”. SIGPLAN Noti-
ces 13(8), 1978, pp. 217-23.

[16]	 P. McJones, “History of LISP”. Software Preser-
vation Group, Computer History Museum, 2005, 
http://www.softwarepreservation.org/projects/
LISP/

[17]	 R.I. Soare, “Computability and Recursion”. Bulletin 
of Symbolic Logic 2(3), 1996, pp. 284-321.

[18]	 R. Sommerhalder, C. van Westrhenen, The Theory 
of Computability: Programs, Machines, Effective-
ness and Feasibility, Addison-Wesley, 1988.

[19]	 H. Stoyan, “LISP History”. Lisp Bulletin 3, 1979, 
pp. 42-53.


