
12

The Turn of Object-Oriented Programming 
in Computerized Models and Simulations
Franck Varenne 
University of Rouen, France

During the first decades after the 1950’s, di-
gital computer aided modeling has mostly 
been twofold. On the one hand, based on its 
ability to emulate any computing device, the 
computer was taken as a formal calculator. On 
the other hand, based on its ability to make 
numerous but advantageously controllable 
approximate computations, the computer was 
used as a numerical solver – a numerical si-
mulator – of mathematical models. As a con-
sequence, the computer was seen by modelers 
either as a model in itself (an analogue) or as 
an instrument (a tool) which permitted the 
resolution and, through that, the manipulation 
of some pre-given mathematical model.

Since the 1990’s, the situation has be-
come richer and more complex. The delayed 
but now vibrant development of a kind of 
programming  –  which techniques date back 
at least to the 60’s  –  called object-oriented 
programming (OOP) and consequently of 
object-oriented modeling (OOM) in most 
empirical sciences and techniques has lead 

more and more modelers to see computer 
simulations as something else than approxi-
mate computations of models: complex com-
putational models are more and more used 
as some kind of “substitutes” and not only as 
analogues or tools.

This talk will try to contextualize and to 
re-estimate the epistemological implications 
of such turn. In particular, it will show that a 
too restrictive definition of “computer simula-
tion” – e.g. not sufficiently aware of the span 
of Von Neumann’s initial ideas – prevents us 
to measure, characterize and temper this so-
mewhat excessive and worrying conception of 
simulations as “substitutes”. The OOP turn is 
a fascinating historical and epistemological 
object in that it reveals us what we someti-
mes had forgotten about the computer and its 
very idea. This turn has implications not only 
in the ways modelers use and see computers 
but also in the ways epistemologists have to 
precisely understand what a computer can be, 
can do and – perhaps – can’t do.


