
EXPLAINING COMPUTING SYSTEMS BEHAVIOURS
Functions, Abstractions, Idealizations

NICOLA ANGIUS 1

(Work in conjunction with Guglielmo Tamburrini)

1Department of History, Human Sciences, and Education.
University of Sassari, Italy

nangius@uniss.it

HaPoC 2015, Pisa, October, 11,

Nicola Angius Explaining CSB HaPoC 10/11/2015 1 / 24

mailto:nangius@uniss.it

Motivations

Philosophy of Computer Science

Explaining computing systems behaviors (CSB) is a pervasive activity in computer
science.

The methodological problem of analyzing what it is to explain CSB has received
relatively scarce attention in the philosophy of computer science (missing in SEP).

Philosophy of Science
Import on models of explanation (functional, causal, mechanist, . . .)

Philosophy of the cognitive (neuro-)sciences
Import on computational modeling and explanation

Nicola Angius Explaining CSB HaPoC 10/11/2015 2 / 24

Main aim

Computing systems form a vast class of physical systems.

Restriction to subclasses of the broad class of computing systems, i.e. digital computers
running offline a variety of programs written in some high-level programming language.

I A pluralistic account of explanations of CSB is provided, which emphasizes the
complementary character of mechanist and functional explanations

I Resisting the identification of explanations in computer science with
causal-mechanistic explanations (Piccinini 2007; Piccinini and Craver 2011).

Nicola Angius Explaining CSB HaPoC 10/11/2015 3 / 24

Summary

1 Specifications and their what-how hierarchies

2 Functional Prescriptions and Explanations of Incorrect CSB

3 On Regulative Ideal for Mechanist Explanation

4 Role filling and the fiction of digital behavior

5 Combining abstraction and indealization in CSB explanations

Nicola Angius Explaining CSB HaPoC 10/11/2015 4 / 24

Specifications and their what-how hierarchies

Program Specifications

Why was an incorrect output observed in this particular run of program P
on personal computer C?

The explanatory request presupposes the existence of norms of executions: specifications.

I In explaining why some executions of a program P conforms with or deviates from
user requirements one is ipso facto explaining why certain human goals and
intentions are complied with or not in those runs of P.

Nicola Angius Explaining CSB HaPoC 10/11/2015 5 / 24

Specifications and their what-how hierarchies

What-How-What

User specifications usually express something about what is to be accomplished (or to
be avoided) whithout saying much about the ways in which this is to be done.

Programmers must choose one among the alternative courses of action that are avilable
to fulfil user specifications, in other words, how they intend to fulfil the ‘what’.

Layers of functional organization descitpions connected by how-what relationships:

I Logic gates and circuits

I microarchitecture

I Instruction Set Architecture (ISA)

I Assembly language instructions

I High level programming language instructions

Nicola Angius Explaining CSB HaPoC 10/11/2015 6 / 24

Specifications and their what-how hierarchies

Functional and Structural Properties

Computational systems are physical machines that can be defined by two kind of
properties (Turner 2014):
functional properties
structural properties

Functional and structural properties descriptions are settled in the hierarchy of what-how
descriptions in terms of specification|implementation must-prescriptions.

Explanations of CSB that are incorrect in the light of those must-prescriptions often
abtstract from any reference to physical components and processes.

Nicola Angius Explaining CSB HaPoC 10/11/2015 7 / 24

Functional Prescriptions and Explanations of Incorrect CSB

A Machine Computing a Factorial

Requirement:
For any
n ∈ N, 0! = 1; (n + 1)! = (n + 1) ∗ n!

Pseudo-Pascal high level code:
1 BEGIN
2 read(n);
3 i := 0;
4 f := 1;
5 WHILE i < n DO;
6 BEGIN
7 i = i + 1;
8 f = f ∗ i ;
9 END
10 write f ;
11 END

MIPS assembly language instructions for
high level code line 5:

5.1 slt $t0, $s1, $s0;
5.2 bne $t0, $zero, L1;

Iimplemented by the following six-field
code-machine instruction:

000000 10001 10000 01000 00000 101010
op rs rt rd shamt funct

. .

Logic gates → device level

Nicola Angius Explaining CSB HaPoC 10/11/2015 8 / 24

Functional Prescriptions and Explanations of Incorrect CSB

Functional Analysis of Miscomputations

Let us suppose that C ouputted a different value instead of m! while m was given as
input.

The what-how hierarchy outlined so far supplies one with a set of a purely functional
descriptions against which one may look for an explanation of the incorrect CSB.

Downward movements along this hierarchy correspond to the steps of a functional
decomposition analysis (Bechtel and Richardson 1993; Cummins 1975):
explaining a capacity in terms of sub-capacities and their organization.

Nicola Angius Explaining CSB HaPoC 10/11/2015 9 / 24

Functional Prescriptions and Explanations of Incorrect CSB

Candidate Explanations

Selecting in the what-how hierarchy the higher-level functional descriptions that are not
satisfied by the observed CSB:

I Erroneous conceived specification:
0! = 2
Provided that the incorrect recursive definition is inherited throughout the lower
functional levels, no extra explanatory work is accrued by mentioning lower level
functional properties or the physical components of C running P.

I Pascal encoding error:
WHILE i ≤ n DO
Explanations appealing to code errors do not need to mention lower level
functional descriptions or taking note of what are the physical components of C.

I .

Nicola Angius Explaining CSB HaPoC 10/11/2015 10 / 24

On Regulative Ideal for Mechanist Explanation

Mechanist Explanation

Mechanisms: “entities and activities organized such that they are productive of regular
changes from start or set-up to finish or termination condition” (Machamer et al. 2000).

Mechanisms - Mechanism Schemata - Mechanism Sketches

Craver (2007): “Progress in building mechanist explanations involes movement along
the . . . sketch - schema - mechanism axis.”

Piccinini and Craver (2011): “decompositional, constitutive explanations gain their
explanatory force by describing mechanisms . . . and, coversely, that they lack explanatory
force to the extent that they fail to describe mechanisms”

Nicola Angius Explaining CSB HaPoC 10/11/2015 11 / 24

On Regulative Ideal for Mechanist Explanation

Abstraction in CSB Explanations

No explanatory benefit is accrued by supplementing the description of a functional
mismatch between some functional requirement R and instruction I with a
description of physical processes by means of which I is actually carried out.

Additional descriptions introduce a surplus of irrelevant functional or structural
details to a more parsimonious explanans and fail to confer additional explanatory
force, or may even jeopardize its intelligibility.

Abstraction from negligible functional or structural details is an explanatory virtue in
computer science, preventing those movements along the sketch-schema-mechanism
axis.

Nicola Angius Explaining CSB HaPoC 10/11/2015 12 / 24

On Regulative Ideal for Mechanist Explanation

Explanation in Science and Technology

Explanations of behaviors manifested by technological systems often arise against the
background of requirements reflecting human goals.

No reference to human goals and intentions is needed to explain why the volcano
Vesuvius erupted and destroyed the town of Pompeii in 79 AD.

The sense in which user requirements are claimed to be prescriptive differs from the
sense in which law-like statements appearing in scientific explanations are often claimed
to be prescriptive too.

Nicola Angius Explaining CSB HaPoC 10/11/2015 13 / 24

Role filling and the fiction of digital behavior

Hardware Exceptions

First clock cycle: Instruction is picked up from memory using the memory address
contained in PC; the instruction is saved in IR; PC is incremented.

Second clock cycle: Fields rs and rt are read; their values are saved in registers A
and B to be used in the next clock cycle.

Third clock cycle: Fields op and funct are read; the ALU computes the
corresponding mathematical operation; the result is saved in ALUOut.

Fourth clock cycle: Destination register corresponding to rd is used to save the
value in ALUOut.

Nicola Angius Explaining CSB HaPoC 10/11/2015 14 / 24

Role filling and the fiction of digital behavior

Flip-Flops and role fillers

Provides a description of functional roles that any
physical device (transistors, vaccum tubes, etc . . .)
must satisfy in order to count as a physical role
filler for an S-R latch, without including more
detailed descriptions of their potential physical role
fillers.

Isolating a faulty transistor: this is a causal explanation for violations of the functional
S-R latch description insofar as it makes reference to one of its physical role fillers.

One can hardly achieve greater explanatory force over this parsimonious explanation by
including causal details about the physical processes carried out by transistors.

Nicola Angius Explaining CSB HaPoC 10/11/2015 15 / 24

Role filling and the fiction of digital behavior

Flip-Flops and role fillers

Physical characteristics of potential role fillers are ignored in functional descriptions of
S-R latches, except for requiring that adequate role fillers must possess distinguished
states to be conventionally associated to one value from the set {0, 1}, and functional
conditions for state transitions in the same set.

However, the orbits and state space trajectories of transistors and vacuum tubes are
usually and more richly described by means of continuous, rather than discrete,
macroscopic variables.

The explanations of incorrect CSB neglect every intermediate state that an actual
computing system goes through.

Nicola Angius Explaining CSB HaPoC 10/11/2015 16 / 24

Role filling and the fiction of digital behavior

From Turing 1950

The digital computers considered in the last section may be classified amongst the
“discrete-state machines”. These are the machines which move by sudden jumps or
clicks from one quite definite state to another. These states are sufficiently different for
the possibility of confusion between them to be ignored. Strictly speaking there are no
such machines. Everything really moves continuously. But there are many kinds of ma-
chines which can profitably be thought of as being discrete-state machines. For instance
in considering the switches for a lighting system it is a convenient fiction that each switch
must be definitely on or definitely off. There must be intermediate positions, but for most
purposes we can forget about them. As an example of a discrete-state machine we might
consider a wheel which clicks round through 120 once a second, but may be stopped by
a lever which can be operated from outside; in addition a lamp is to light in one of the
positions of the wheel . . . (Turing 1950, 439-440).

Nicola Angius Explaining CSB HaPoC 10/11/2015 17 / 24

Combining abstraction and indealization in CSB explanations

Modeling Reactive Systems

Why this class of machines display the specifed regular behaviour?

Reactive systems: systems that interact with their environment and carry out
non-terminating computations.

Formal Methods: models involve an extensive use of both abstraction and distortive
idealization (Novack 1979; Cartwright 1989; Weisberg 2007).

I Abstraction hides mechanist details of lower descriptions;

I Distortive idealization makes the inclusion of those details impossibile.

Nicola Angius Explaining CSB HaPoC 10/11/2015 18 / 24

Combining abstraction and indealization in CSB explanations

Model Checking

Model checking: enables one to verify whether runs of reactive system R satisfy,
according to a suitable model M of R, properties that are decidable in M.

Models: Kripe Structures, Büchi automata, etc . . .

Properties: safety, invariant, liveness, etc
Expressed by means of temporal logic formulas.

Data abstraction: a function mapping variables apppearing in more fine-grained
representations of the program into some macro-variables.

Model abstracts from many features of the actual computing system by including
macro-state obtained by a collapse of many actual states.

Nicola Angius Explaining CSB HaPoC 10/11/2015 19 / 24

Combining abstraction and indealization in CSB explanations

Macro-Wave Oven

M = (S , S0,R, L)

AP = {Started ,¬Started ,Closed ,¬Closed ,
Heated ,¬Heated ,Cooked ,¬Cooked ,
Error ,¬Error}

Liveness: whenever the oven is on, it will
eventually start heating.
CTL formula: AG(Started → AFHeated)

M |= AG(Started → AFHeated) ?

Nicola Angius Explaining CSB HaPoC 10/11/2015 20 / 24

Combining abstraction and indealization in CSB explanations

Distortive Idealizations in Model Checking

Excluding system trajectories that are physically possible but either reflect unreasonable
interactions with the environment or else arise on account of hardware failures.

Examples:
π = s1, s3, s1, s3, . . . , s1, s3

π′ = s1, s2, s5, s3, s1

Fairness constraints: defined in terms of the set of states that are required to appear
infinitely often in any allowed path and interpreted as CTL formulas.

Example:
Started ∧ Closed ∧ ¬Error

Nicola Angius Explaining CSB HaPoC 10/11/2015 21 / 24

Combining abstraction and indealization in CSB explanations

Distortive Idealizations in Model Checking

False Negatives: due to the increment of KS’s granularity induced by data abstraction.

If lower implementing descriptions were to be considered in the how/that hierarchy, such
paths would appear to be a difficulty since lower levels became non-correct
implementations.

Abstraction Refinement: In case M |=F AG(Started → AFHeated) produced false
negatives, the granularity of the KS is decreased up to individuating the faulty modelled
transitions.

Nicola Angius Explaining CSB HaPoC 10/11/2015 22 / 24

Combining abstraction and indealization in CSB explanations

Conclusions

Wesely Salmon (1998, p.75):

“Although some philosophers have maintained that the mechanistic explanation, when it
can be given, supersedes the functional explanation, Wright holds that they are perfectly
compatible, and that the functional explanation need not give way to the mechanistic
explanation. I think he is correct in this view.”

Nicola Angius Explaining CSB HaPoC 10/11/2015 23 / 24

Combining abstraction and indealization in CSB explanations

References

Bechtel, W., & Richardson, R. C. (1993). Discovering complexity. Princeton, NJ: Princeton UP.

Cartwright, N. (1989) [1994]. Natures capacities and their measurement. Oxford, New York: Oxford University Press.

Craver, C. F. (2007). Explaining the brain. Oxford: Oxford University Press.

Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72(20), 741765.

Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of science, 1-25.

Nowak, L. (1979). The structure of idealization. Towards a systematic interpretation of marxian idea of science. Dordrecht:
Kluwer.

Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches.
Synthese, 183(3), 283-311.

Salmon, W. C. (1998). Causality and explanation. Oxford: Oxford University Press.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 433-460

Turner, R. (2014). Programming languages as technical artifacts. Philosophy & Technology, 27(3), 377-397.

Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 104(12), 639659.

Nicola Angius Explaining CSB HaPoC 10/11/2015 24 / 24

	Specifications and their what-how hierarchies
	Functional Prescriptions and Explanations of Incorrect CSB
	On Regulative Ideal for Mechanist Explanation
	Role filling and the fiction of digital behavior
	Combining abstraction and indealization in CSB explanations

