
3

Functions, Abstractions, and Idealizations
in the Explanation of Computing Systems’ Behaviours
Nicola Angius (joint work with Guglielmo Tamburrini)
University of Sassari, Italy

Computing systems (CS) form a vast class of
physical systems, embracing general purpose
personal computers, myriads of special pur-
pose computing devices embedded into many
technological systems (cars, smartphones,
robots), and worldwide networks of compu-
ters that cooperate to carry out concurrent or
parallel computations. One of the main acti-
vities computer scientists are engaged into is
evaluating the realized artefacts with respect
to users requirements. Accordingly, explaining
computing systems’ behaviours (CSB), both
correct and incorrect, is a pervasive and varied
activity in computer science. However, the me-
thodological problem of analyzing what it is to
explain CSB has not received much attention
in the philosophy of science and technology.
This paper explores the problem of CSB ex-
planations by focusing on machines belonging
to restricted subclasses of the broad class of
computing systems, i.e. digital computers run-
ning offline a variety of programs written in
some high-level programming language. These
case studies enable one to highlight significant
features of explanations in computer science,
concerning both correct and incorrect beha-
viours of those computing systems.

It is pointed out here that many explana-
tions of CSB, which are acknowledged as ade-
quately addressing the explanatory requests
from which they arose, bottom out without
making any reference to physical compo-
nents and processes of computing systems.

Accordingly, these explanations rely on purely
functional decomposition strategies [2, 3] while
abstract away from all physical components of
CS and physical descriptions of the processes
they engage into. This analysis of CSB expla-
nations is brought to bear on mechanistic mo-
dels of explanation [6]. The latter often come
with the regulative ideal of the full physical
instantiation of functional roles as a means to
achieve greater explanatory force [7, 4]. Ho-
wever, following this regulative ideal does not
invariably lead to better explanations in com-
puter science, insofar as the functional de-
composition strategy can be decoupled from
the functional role filler instantiation strategy
without losing in explanatory force.

Such thesis is here maintained by introdu-
cing two why-questions concerning CSB:

a)	 Why has digital computer C displayed
an incorrect/correct behaviour in these
particular executions (or runs) of pro-
gram P on inputs I1, …., In?

b)	 Why were physically heterogeneous
digital computers D1 and D2 capable
of running the same program P?

User specifications usually tell program-
mers something about what is to be accompli-
shed without saying much about the processes
by means of which this is to be done. If some
user specification admits a computational so-
lution at all, then it can be fulfilled by means
of an infinite number of programs written in

Invited speakers

4

many different programming languages. By
selecting some particular high-level program-
ming language L for writing a program, pro-
grammers introduce constraints on the how,
on the means to be used to fulfil user inten-
tions. CSB explanations fulfilling explanatory
requests of type a) and b) are in this paper
addressed by reference to hierarchically orga-
nized layers of nested what-how descriptions
one usually finds in computer architecture ma-
nuals. At the bottom there is the device level,
that is, the physical level whose main objects
of interest (the “what” of the physical level)
are transistors or other physical devices which
can be used as switches. Immediately above
the device level there is the logical gate level,
which is concerned with logic gates that are
built out of transistors or other physical devi-
ces functioning as switches. Further up in the
hierarchy the microarchitecture level includes a
collection of registers that form a local memory
and a special circuit called the Arithmetic Logic
Unit (ALU). Still ascending in the hierarchy one
finds the Instruction Set Architecture (or ISA)
level. Programs written in various high-level
languages are translated in the form of ISA
level instructions, going through the previous
translation of assembly language instructions.

The examination of question (a) allows
this paper to exhibit how functional analyses
decoupled from mechanist instantiations are

satisfactorily capable of supplying explana-
tions answering this questions type. In the case
of incorrect CSB, this is shown by advancing
explanations of a machine failing in yielding
the correct factorial n! for the input number
n. Explanations are there provided by isola-
ting functional what-layers, in the how-what
hierarchy, that do not fulfil upper how- pre-
scriptions. And in the case of correct CSB, ex-
planations are here supplied by abstract and
idealized computational models used in the
formal verification method known as Model
Checking [1] to check whether P satisfies gi-
ven behavioural properties for each system’s
potential run. Question (b) concerns the ex-
planation of chains of events that are observed
across different runs of P, no matter whether
correct or incorrect, on architecturally dissi-
milar CS. This paper shows that even in the
explanation of P-commonalities of architec-
turally heterogeneous physical systems there is
no need to take into account all the physical
details of the system in order to achieve better
explanations. On the contrary, distortive idea-
lizations [5] from physical processes of each
system are essential to adequately address ex-
planatory requests of this sort. This latter point
will be maintained on the basis of the exami-
nation of general specifications of discrete sta-
te machines that can be attributed to Turing’s
[8] analyses of computational processes.

References
[1]	 C. Baier, J.P. Katoen, Principles of model checking,

MIT Press, 2008.
[2]	 W. Bechtel, R.C. Richardson, Discovering complexi-

ty, Princeton University Press 1993.
[3]	 R. Cummins, “Functional analysis”, Journal of Philo-

sophy 72(20), 1975, pp. 741-765.
[4]	 D.M. Kaplan, “Explanation and description in com-

putational neuroscience”, Synthese 183(3), 2011,
pp. 339-373.

[5]	 E. McMullin, “Galilean idealization”, Studies in Hi-

story and Philosophy of Science Part A 16(3), 1985,
pp. 247-273.

[6]	 G. Piccinini, “Computing mechanisms”, Philosophy
of Science 74(4), 2007, pp. 501-526.

[7]	 G. Piccinini, C. Craver, “Integrating psychology and
neuroscience: Functional analyses as mechanism
sketches”, Synthese 183(3), 2011, pp. 283-311.

[8]	 A.M. Turing, “On computable numbers, with an
application to the Entscheidungsproblem”, London
Mathematical Society 2(43), 1936, pp. 230-265.

