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Computing systems (CS) form a vast class of 
physical systems, embracing general purpose 
personal computers, myriads of special pur-
pose computing devices embedded into many 
technological systems (cars, smartphones, 
robots), and worldwide networks of compu-
ters that cooperate to carry out concurrent or 
parallel computations. One of the main acti-
vities computer scientists are engaged into is 
evaluating the realized artefacts with respect 
to users requirements. Accordingly, explaining 
computing systems’ behaviours (CSB), both 
correct and incorrect, is a pervasive and varied 
activity in computer science. However, the me-
thodological problem of analyzing what it is to 
explain CSB has not received much attention 
in the philosophy of science and technology. 
This paper explores the problem of CSB ex-
planations by focusing on machines belonging 
to restricted subclasses of the broad class of 
computing systems, i.e. digital computers run-
ning offline a variety of programs written in 
some high-level programming language. These 
case studies enable one to highlight significant 
features of explanations in computer science, 
concerning both correct and incorrect beha-
viours of those computing systems.

It is pointed out here that many explana-
tions of CSB, which are acknowledged as ade-
quately addressing the explanatory requests 
from which they arose, bottom out without 
making any reference to physical compo-
nents and processes of computing systems. 

Accordingly, these explanations rely on purely 
functional decomposition strategies [2, 3] while 
abstract away from all physical components of 
CS and physical descriptions of the processes 
they engage into. This analysis of CSB expla-
nations is brought to bear on mechanistic mo-
dels of explanation [6]. The latter often come 
with the regulative ideal of the full physical 
instantiation of functional roles as a means to 
achieve greater explanatory force [7, 4]. Ho-
wever, following this regulative ideal does not 
invariably lead to better explanations in com-
puter science, insofar as the functional de-
composition strategy can be decoupled from 
the functional role filler instantiation strategy 
without losing in explanatory force.

Such thesis is here maintained by introdu-
cing two why-questions concerning CSB:

a)	 Why has digital computer C displayed 
an incorrect/correct behaviour in these 
particular executions (or runs) of pro-
gram P on inputs I1, …., In?

b)	 Why were physically heterogeneous 
digital computers D1 and D2 capable 
of running the same program P?

User specifications usually tell program-
mers something about what is to be accompli-
shed without saying much about the processes 
by means of which this is to be done. If some 
user specification admits a computational so-
lution at all, then it can be fulfilled by means 
of an infinite number of programs written in 
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many different programming languages. By 
selecting some particular high-level program-
ming language L for writing a program, pro-
grammers introduce constraints on the how, 
on the means to be used to fulfil user inten-
tions. CSB explanations fulfilling explanatory 
requests of type a) and b) are in this paper 
addressed by reference to hierarchically orga-
nized layers of nested what-how descriptions 
one usually finds in computer architecture ma-
nuals. At the bottom there is the device level, 
that is, the physical level whose main objects 
of interest (the “what” of the physical level) 
are transistors or other physical devices which 
can be used as switches. Immediately above 
the device level there is the logical gate level, 
which is concerned with logic gates that are 
built out of transistors or other physical devi-
ces functioning as switches. Further up in the 
hierarchy the microarchitecture level includes a 
collection of registers that form a local memory 
and a special circuit called the Arithmetic Logic 
Unit (ALU). Still ascending in the hierarchy one 
finds the Instruction Set Architecture (or ISA) 
level. Programs written in various high-level 
languages are translated in the form of ISA 
level instructions, going through the previous 
translation of assembly language instructions.

The examination of question (a) allows 
this paper to exhibit how functional analyses 
decoupled from mechanist instantiations are 

satisfactorily capable of supplying explana-
tions answering this questions type. In the case 
of incorrect CSB, this is shown by advancing 
explanations of a machine failing in yielding 
the correct factorial n! for the input number 
n. Explanations are there provided by isola-
ting functional what-layers, in the how-what 
hierarchy, that do not fulfil upper how- pre-
scriptions. And in the case of correct CSB, ex-
planations are here supplied by abstract and 
idealized computational models used in the 
formal verification method known as Model 
Checking [1] to check whether P satisfies gi-
ven behavioural properties for each system’s 
potential run. Question (b) concerns the ex-
planation of chains of events that are observed 
across different runs of P, no matter whether 
correct or incorrect, on architecturally dissi-
milar CS. This paper shows that even in the 
explanation of P-commonalities of architec-
turally heterogeneous physical systems there is 
no need to take into account all the physical 
details of the system in order to achieve better 
explanations. On the contrary, distortive idea-
lizations [5] from physical processes of each 
system are essential to adequately address ex-
planatory requests of this sort. This latter point 
will be maintained on the basis of the exami-
nation of general specifications of discrete sta-
te machines that can be attributed to Turing’s 
[8] analyses of computational processes.
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